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The single-domain Darcy–Brinkman model is applied to some analytically tractable
flows through adjacent porous and pure-fluid domains and is compared systematically
with the multiple-domain Stokes–Darcy model. In particular, we focus on the
interaction between flow and solidification within the mushy layer during binary
alloy solidification in a corner flow and on the effects of the chosen mathematical
description on the resulting macrosegregation patterns. Large-scale results provided
by the multiple-domain formulation depend strongly on the microscopic interfacial
conditions. No satisfactory agreement between the single- and multiple-domain
approaches is obtained when using previously suggested conditions written directly at
the interface between the liquid and the porous medium. Rather, we define a viscous
transition zone inside the porous domain, where the Stokes equation still applies, and
we impose continuity of pressure and velocities across it. This new condition provides
good agreement between the two formulations of solidification problems when there
is a continuous variation of porosity across the interface between a partially solidified
region (mushy zone) and the melt.

1. Introduction
Simultaneous flow through both a pure fluid and a porous medium occurs in a

wide range of industrial processes and natural phenomena. It happens for instance
during the solidification of multi-component melts, where the solid and the remaining
liquid are separated by a layer of mixed phase called a mushy layer that continuously
evolves because of internal solidification and local dissolution (see reviews by Worster
1997, 2000, for example).

A classical approach to such systems (either with a reacting or a non-reacting porous
matrix) consists of solving the Navier–Stokes equations in the fluid and Darcy’s
equation in the porous medium (e.g. Levy & Sanchez-Palencia 1975; Schulze &
Worster 1999). The problem then remains of defining relevant boundary conditions
at the interface between the two domains. Continuity of pressure and normal velocity
(i.e. mass conservation) are robust and generally accepted boundary conditions. Then,
näıve choices regarding the tangential velocity component would be either that it
vanishes for low permeability or that it is continuous for large permeability. However,
both turn out to be inaccurate, as shown for instance by the experiments of Beavers &
Joseph (1967). Rather, these authors postulated a discontinuity in the interfacial
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tangential velocity given by

uS − uD =

√
Π

α

∂uS

∂z
, (1.1)

where z is the direction perpendicular to the interface, uS the Stokes velocity calculated
inside the fluid, uD the Darcy velocity calculated inside the porous matrix and
Π its permeability. The dimensionless coefficient α characterizes the structure of
the permeable material near its interface with the pure liquid, and must therefore
be determined for each particular system. This boundary condition was validated
experimentally by Beavers & Joseph (1967) in the case of a Poiseuille flow in a
channel formed by an impermeable wall at z = +h and a permeable wall at z = 0
(cf. figure 1 below). It was also justified analytically by Saffman (1971) using ad
hoc representations of forces and energy exchanges at the interface. Since then,
more complicated multiple-domain formulations have been suggested, introducing
a fluid–fluid viscous correction in the porous matrix (Brinkman 1947). Many types
of interfacial conditions have been used, e.g. continuity of the tangential velocity
but discontinuity of the tangential shear stress (Ochoa-Tapia & Whitaker 1995a), or
continuity of both the tangential velocity and the tangential shear stress (Neale &
Nader 1974), or discontinuity of both the tangential velocity and the tangential shear
stress (Cieszko & Kubik 1999). Clearly the definition of practical and relevant first-
order interfacial conditions between a pure fluid and a porous matrix remains an
open question.

To avoid these problems computationally, some models of binary alloy solidification
use single formulations for the solid, the liquid and the mushy layer, which are then
resolved on the same mesoscopic scale (see for instance Felicelli, Heinrich & Poirier
1991; Schneider et al. 1997). This approach seems to eliminate the need for explicit
consideration of interfaces. Mesoscopic transport equations are either postulated
using mixture theory (Hills, Loper & Roberts 1983) or derived from the volume
averaging of the classical microscopic equations (Beckermann & Viskanta 1988).
Until now, this single-domain method has been utilised mostly to determine the
various characteristic fields (temperature, concentration, liquid fraction, velocity) at
a mesoscopic scale in industrial settings (e.g. Gu & Beckermann 1999), whereas the
multiple-domain method has been utilised to study the dynamics of interactions
between the different regions in idealized theoretical cases (e.g. Chung & Worster
2002). Results from the two approaches have been compared in the case of the linear
stability analysis of double-diffusive convection in superposed fluid and porous layers
(Zhao & Chen 2001).

In the present paper, we apply the single-domain formulation to some analytically
tractable cases and systematically compare it with the multiple-domain formulation,
using previously suggested interfacial conditions as well as a new set proposed here.
Our purposes are to illustrate how large-scale results are influenced by the assumed
small-scale structure of the interface and to suggest under which conditions results
provided by the two approaches agree. Our main interest stems from modelling
interactions between flow and solidification within mushy layers.

In § 2, we derive the single-domain equation of motion (i.e. Darcy–Brinkman)
using the volume-averaging method, in a context in which all variables change on
scales larger than the averaging length. We highlight the underlying assumptions,
define the relevant parameters and variables, and study its limits in the case of
either a pure fluid or a small Darcy number, where it respectively gives rise to the
Navier–Stokes and Darcy equations. In § 3, we solve the Darcy–Brinkman equation
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in the configuration studied by Beavers & Joseph (1967): a Poiseuille flow in a fluid
overlying a porous layer with a constant porosity. This allows us to define a new set of
conditions at the mushy layer–liquid interface, which leads to a closer agreement with
the experiments of Beavers & Joseph (1967) compared to the previously proposed
interfacial conditions. In § 4, we similarly study a corner flow in a fluid overlying
a porous layer, both with a constant porosity and with a linear porosity variation.
In addition to the previous case, these self-similar configurations allow us, still with
one-dimensional calculations, to take into account the effects of flow crossing the
interface. Differences between the various formulations are then highlighted. Finally,
in § 5, we study the solidification of a binary alloy in a corner flow. The interaction
between flow and solidification within the mushy region is examined precisely in this
simple geometry, and the importance of the interfacial conditions is highlighted by
comparing their effects on the computed macroscopic fields (i.e. temperature, velocity,
porosity and, especially, bulk concentration).

2. The Darcy–Brinkman equation and its limits
The Darcy–Brinkman equation has been widely used to study flows in porous media

in various contexts. However, a careful look at the publications over the past twenty
years shows no general agreement regarding its conditions of applicability and the
definition of its variables, especially the ‘effective’ viscosity and the relevant pressure.
Hence, we present here a concise derivation of the Darcy–Brinkman equation based
on the volume-averaging method, focusing on the underlying assumptions and on its
relationships with the Navier–Stokes and Darcy equations. We focus our attention
on cases in which all variables are continuous at the mesoscopic scale (for instance in
solidification problems). A complete mathematical description of cases in which the
porosity is discontinuous can be found in Ochoa-Tapia & Whitaker (1995a).

2.1. A volume-averaged mesoscopic momentum-transport equation

We consider a domain comprising both a solid and a liquid phase, for instance a
porous medium or a solidifying material, and we define a mesoscopic volume �V

large enough to smooth the morphological complexities but small enough to capture
the global transport properties (i.e. typically a few pore lengths). We denote by η

the viscosity of the liquid, χ the liquid volume fraction (porosity) and ρk the density
of the liquid (k = l) and the solid (k = s) respectively. For simplicity, we suppose
that the solid phase is stationary, i.e. us = 0, and we neglect variations of material
properties inside the control volume �V , i.e. [η]l = η and [ρk]

k = ρk , where [ρk]
k

stands for the intrinsic volume average in phase k (see the Appendix).
The microscopic momentum equation inside the fluid phase is the Navier–Stokes

equation

∂

∂t
ρlul + ∇ · (ρlulul) = −∇Pl + ∇ · T + ρl g, (2.1)

where ul is the liquid velocity, Pl the pressure inside the liquid, g the acceleration due
to gravity, and T the viscous stress tensor. We consider here a Newtonian fluid, where

T = η(∇ul + (∇ul)
T ). (2.2)

The mesoscopic momentum equation can be obtained by taking the average of (2.1)
over �V , using concepts and formulae defined in the Appendix. Hence,

∂

∂t
[ρlul] + ∇ · (χ[ρlul]

l[ul]
l) = −[∇Pl] + ∇ · [T] + [ρl g] + Ml + Al + Il, (2.3)
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where

Ml = −∇ · [ûl ûl], (2.4a)

Al =
1

�V

∫
�A

ul(w − ul) · nl dA, (2.4b)

Il =
1

�V

∫
�A

T · nl dA. (2.4c)

Here, [ul] stands for the average value of the liquid velocity over �V , ûl for its
fluctuating component, w for the velocity of the microscopic interface and �A for
the interfacial area between the liquid and solid phases in �V (see the Appendix).

We can simplify the various terms on the right-hand side as follows. According to
(A3) in the Appendix.

[∇Pl] = χ∇[Pl]
l +

1

�V

∫
�A

P̂lnl dA, (2.5)

and we neglect the second term, corresponding to pressure fluctuations on the solid–
liquid interface. We should highlight here that [Pl]

l (i.e. the average value of the liquid
pressure in the liquid only) is the relevant physical parameter: it could for instance
be measured experimentally by placing an open pipe filled with pure fluid within the
porous structure. Hence, at an interface of a porous matrix, we expect this pressure
to be continuous with the pressure in the adjacent pure fluid.

Also from (A3) of the Appendix,

[η∇ul] = η∇[ul] +
η

�V

∫
�A

nlul dA. (2.6)

Here, the second term on the right-hand side accounts for the influence of the
liquid–solid interface geometry on the large-scale momentum diffusion. When ul is
uniform, this term should be zero, so it is related to leading order by ∇[ul]. Taking
it proportional to ∇[ul] as a first-order approximation, one can define an effective
viscosity η∗ as

[η∇ul] = η∗∇[ul] (2.7)

(e.g. Shyy et al. 1997). Hence,

∇ · [T ] = ∇ · η∗(∇[ul] + (∇[ul])
T). (2.8)

However, in the following, we consider either a fixed non-reacting solid matrix or a
mushy layer in which ρl = ρs . Then the liquid velocity at the microscopic liquid–solid
interface is zero and (2.6) implies η∗ = η. In these cases, the effective viscosity should
not be taken as an adjustable coefficient, conveniently chosen to match expected
results.

The term Ml appears because ul fluctuates inside the control volume and thus differs
from its averaged value. Following large-eddy-simulation techniques in turbulence (e.g.
Lesieur 1993; Moin et al. 1991), these fluctuations could be parameterized and related
to the mesoscopic gradient of velocity (e.g. Shyy et al. 1997). For simplicity however,
we suppose here that the velocity fluctuations remain small and neglect Ml .

The advective term Al is due to the relative motion of the interface in a reacting
porous medium. It appears for instance during solidification, where it is related to
the volume change (i.e. to the difference between ρl and ρs), which we neglect in the
following.
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The interfacial viscous stress exchange Il corresponds to the microscopic momentum
exchange of the Newtonian fluid with the solid matrix and must be related to the
viscosity of the fluid, to the relative velocity of the solid and the liquid and to the
morphology of the porous matrix. As a first approximation, this term can thus be
written (Ochoa-Tapia & Whitaker 1995a)

Il = −η[ul]f, (2.9)

where f is some function of the morphology of the porous matrix. Since Il = 0 in
pure fluid,

f → 0 when χ → 1. (2.10)

For comparison with the standard Darcy’s law, we will see in § 2.2 that it is convenient
to write

Il = − ηχ

Π (χ)
u, (2.11)

where the function Π introduced here corresponds to the permeability defined in
Darcy’s law and u is the Darcy velocity, defined as the volume flow rate per unit
cross-sectional area. Hence with our notation,

u = [ul] = χ[ul]
l . (2.12)

If we further suppose a mesoscopically incompressible fluid (i.e. ∇ · u = 0), and if
we apply the Boussinesq approximation, the momentum equation finally becomes

ρl

∂

∂t
u + ρlu · ∇

(
u
χ

)
= −χ∇[Pl]

l + η∇2u + χρl g − ηχ

Π (χ)
u, (2.13)

which is the Darcy–Brinkman equation. Using this equation implies that all fields
χ , [Pl]

l , u and ∇u are continuous through the whole domain. Although the general
form of this equation is well known, variations of it can be found in the literature,
especially in the location of the porosity within each term (e.g. Bennon & Incropera
1987; Shyy et al. 1997; Beckermann et al. 1999; Kaempfer & Rappaz 2003). Special
care should be taken, since having the porosity inside or outside the gradients in
(2.13) can lead to large effects when the porosity changes spatially, as for instance in
a mushy layer.

2.2. Limits of the Darcy–Brinkman equation

We can non-dimensionalize (2.13) using a given velocity scale V and a given length
scale L. If we choose the viscous pressure scale P = ηV/L, then

Re

[
∂

∂t
u + u · ∇

(
u
χ

)]
= −χ∇[Pl]

l + ∇2u − χ
ρlgL2

ηV
ez − χ

L2

Π (χ)
u, (2.14)

where ez is a unit vertical vector and Re = ρlV L/η the Reynolds number. In the
pure-fluid limit, χ = 1 and, from (2.10), Π → ∞, so the Darcy–Brinkman equation
gives the standard Navier–Stokes equation

Re

(
∂

∂t
u + u · ∇u

)
= −∇P + ∇2u − ρlgL2

ηV
ez, (2.15)

where P is the liquid pressure.
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δ

Figure 1. Poiseuille flow in a fluid overlying a porous layer: velocity profiles using the
limiting Darcy–Brinkman formulation and Stokes–Darcy formulation with either Beavers &
Joseph’s (1967) interfacial conditions or the interfacial conditions proposed here. χf = 0.5,

Π (χf )/h2 = 10−3 and η−1dp/dx = −1 m−1s−1.

If we instead choose Darcy’s pressure scale P = ηLV/Π0 (where Π0 is a
characteristic scale of permability), we obtain

Da Re

[
∂

∂t
u + u · ∇

(
u
χ

)]
= −χ

[
∇[Pl]

l +
ρlgΠ0

ηV
ez +

Π0

Π (χ)
u
]

+ Da∇2u, (2.16)

where Da = Π0/L
2 is the Darcy number. In the limit Da → 0, the Darcy–Brinkman

equation gives the standard Darcy equation

u = −Π (χ)

Π0

(
∇[Pl]

l +
ρlgΠ0

ηV
ez

)
. (2.17)

In the following, we study various flows in multiphase domains using both a single-
domain approach, where we solve the Darcy–Brinkman equation through the whole
domain, and a multiple-domain approach, where we solve Stokes’ equation in the pure
fluid and Darcy’s equation in the porous matrix, with relevant interfacial conditions.

3. Poiseuille flow in a fluid overlying a porous layer
Following Beavers & Joseph (1967), we consider a two-dimensional Poiseuille flow

in a channel formed by an impermeable wall at z = +h and a permeable wall at
z = 0 (cf. figure 1). The boundary at z = 0 corresponds to the upper surface of
a semi-infinite porous medium with a fixed porosity χf and permeability Π (χf ),
saturated with the same fluid. A constant horizontal pressure gradient dp/dx < 0 is
imposed through both the liquid and the porous medium, and we look for a velocity
in the form u = (u(z), 0).

3.1. Darcy–Brinkman formulation

We first suppose that the fluid in the channel and in the porous medium follows the
Darcy–Brinkman equation (2.13). Hence, defining the intrinsic volume average of the
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Figure 2. (a): Poiseuille flow profiles computed with Darcy–Brinkman formulation for various
values of the averaging size δa = a

√
Π (χf ). (b): relative flow rate increase depending on

the scaling coefficient a. In these computations, χf = 0.9, Π (χf )/h2 = 10−3 and η−1dp/dx =

− 1 m−1 s−1.

dynamic pressure in the liquid as p =[Pl]
l − ρlgz, we have

0 = −χ
dp

dx
+ η

d2u

dz2
− ηχ

Π (χ)
u. (3.1)

In the Darcy–Brinkman formulation, all fields correspond to average values over a
mesoscopic volume and are continuous. To better illustrate this point, we suppose the
mesoscopic averaging volume to be a cube with side length δa , typically a few pore
lengths. Hence,

δa = a
√

Π (χf ), (3.2)

where a = O(1). Then, the liquid fraction is given by χ = χf for z � −δa , χ = 1.0 for
z � +δa , and χ = (1−χf )z/2δa +(1+χf )/2 for −δa � z � δa . For a given permeability
function following condition (2.10), (3.1) can be solved with the boundary conditions

u(h) = 0 and
du

dz
(−∞) = 0. (3.3)

For instance, computed profiles are shown in figure 2(a), using the Carman–Kozeny
permeability function (Bear 1972)

Π (χ) = Π0

χ3

(1 − χ)2
, (3.4)

where Π0 is a reference permeability.
Computed results depend both on the choice of the permeability function and on

the choice of the averaging length δa . However, in all cases the solution converges
towards a single limit when δa → 0 (figure 2b), which only depends on the permeability
and the porosity of the porous domain. This limit can be determined analytically by
solving

0 = −dp

dx
+ η

d2u

dz2
in the liquid (0 < z � h), (3.5a)

0 = −χf

dp

dx
+ η

d2u

dz2
− ηχf

Π (χf )
u in the porous matrix (−∞ < z < 0). (3.5b)
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Hence, with u(h) = 0 and u finite as z → −∞,

u(z) =
1

2η

dp

dx
(z − h)(z − A) in the liquid, (3.6a)

u = Bez/δ − χf δ2

η

dp

dx
in the porous matrix, (3.6b)

where A and B are constants to be determined and

δ =

√
Π (χf )

χf

. (3.7)

Since we use a continuous formulation through both the liquid and the porous matrix,
the velocity u as well as its derivative du/dz must be continuous at z = 0. This leads
to

A = −hδ + 2χf δ2

h + δ
, B = − δ

2η

dp

dx

h2 − 2χf δ2

h + δ
. (3.8)

The length scale of the transition zone δ and the averaging length δa are of the same
order of magnitude. Hence, the limit solution δa = 0 with δ �= 0 is not mathematically
rigorous. Nevertheless, we use it in the following since it is analytically tractable and
since it correctly illustrates the behaviour of the full solution (see Ochoa-Tapia &
Whitaker (1995b) for a complete and mathematically rigorous treatment of this
configuration).

3.2. Comparison with Beavers & Joseph (1967)

Following Beavers & Joseph (1967), we then compute the relative increase in flow
rate due to the porous wall

Φ =

[
− 1

12η

dp

dx
h3

]−1∫ h

0

u(z) dz − 1, (3.9)

(plotted in figure 2b for general values of a), where the denominator corresponds to
the flow rate for an impermeable lower wall or for a vanishing tangential velocity at
the interface, corresponding to (3.6a) with A = 0. In order to compare with Beavers &
Joseph (1967), we define

α =
√

χf and σ =
h√

Π (χf )
, (3.10)

where σ is the inverse of the square root of the Darcy number. Then, the relative
flow rate increase for the limiting case of Darcy–Brinkman is

Φ =
3(σ + 2α)

σ (1 + ασ )
. (3.11)

This is exactly the relationship found by Beavers & Joseph (1967), using Stokes’
equation in the liquid, Darcy’s equation in the porous matrix, and their slip boundary
condition at the interface (1.1). Compared to their results, we now have a physical
interpretation of the coefficient α for the limiting Darcy–Brinkman case, where α is
equal to the square root of the porosity. This agrees with Beavers & Joseph’s (1967)
conclusion that the coefficient α depends particularly on structural parameters
characterizing the nature of the porous surface rather than on the viscosity of
the fluid or on the permeability itself.

Taking (3.10), the Darcy–Brinkman velocity and the Beavers & Joseph (1967)
velocity in the pure fluid and deep in the porous matrix are exactly equal. There
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are differences only in the viscous transition zone, where the exponential decay in
the Darcy–Brinkman formulation is replaced by a sharp jump in Beavers & Joseph
(1967).

3.3. New interfacial conditions between Stokes and Darcy solutions

In our notation, the Beavers & Joseph (1967) interface condition (1.1) can be written

uD = uS(0) − δ
duS

dz
= uS(−δ). (3.12)

This can be interpreted as that, in the mixed Stokes–Darcy approach, the Stokes
velocity is extrapolated up to a depth −δ, where it is continuous with the Darcy
velocity. Indeed, Darcy’s law is a volume-averaged relationship in the porous matrix,
and it cannot be defined on scales smaller than the averaging length δa: in particular,
Darcy’s law is not valid at a distance closer than δa to the interface, and any boundary
condition between Stokes and Darcy formulation must be formulated deeper than
this.

This conclusion can also be seen in the force balance suggested by the Darcy–
Brinkman equation. In the liquid, the pressure gradient is balanced by fluid–fluid
interactions (i.e. Stokes’ equation). Deep in the porous medium, the pressure gradient
is balanced by viscous dissipation against the solid matrix (i.e. Darcy’s equation). Just
below the interface, a transition zone exists in which both physical interactions are
present. A simple estimation of the forces indicates that Darcy’s term becomes larger
than the fluid–fluid interaction once

η∇2u ∼ η
u

z2
<

ηχf

Π (χf )
u, (3.13)

which means

z < −
√

Π (χf )

χf

= −δ. (3.14)

Hence, to leading order, Stokes’ equation remains valid up to the depth −δ.
In any multiphase-flow study using the mixed Stokes–Darcy formulation, we

therefore suggest a generalized interface condition corresponding to continuity of
the velocity vector (as well as of the liquid pressure) at the position zi − δ, where zi

is the porous matrix–liquid interface position and δ is the characteristic size of the
viscous transition zone (a few pore lengths):

uS(zi − δ) = uD(zi − δ) with δ = c

√
Π (χf )

χf

, (3.15)

where c is a constant of order 1 (c = 1 for the limiting Darcy–Brinkman case).
This new interfacial condition appears to be very close to Beavers & Joseph’s (1967)

suggestion, and it also necessitates an unknown constant. Nevertheless, it is both
physically justified and simpler to implement, especially in numerical simulations.
Besides, this new interfacial condition leads to a relative flow rate increase in the
Poiseuille geometry of

Φ =
3(σ + 2α + 1/α)

σ (1 + ασ )
, (3.16)

where α =
√

χf /c. As illustrated in figure 3, this equation leads to a slightly better
agreement with the experiments of Beavers & Joseph (1967). We thus expect these
interfacial conditions to be more accurate.
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1.0

σ = h/Π1/2

Φ

Figure 3. Relative flow rate increase as a function of the inverse of the square root of
the Darcy number. Triangles and circles represent experimental measurements by Beavers &
Joseph (1967) using aloxite porous specimens. The continuous line corresponds to the best
fit according to (3.16) (α = 0.12), using our proposed interfacial conditions (3.15). The
dashed line corresponds to the best fit according to (3.11) (α = 0.1), using Beavers &
Joseph’s (1967) interfacial conditions (1.1) or the limiting Darcy–Brinkman formulation (see
§ 3.1). The dashed-dotted line corresponds to a continuous velocity at the interface, given by
the limit of (3.16) when δ → 0, i.e. when α → ∞. By definition, the condition of zero tangential
velocity leads to Φ = 0.

We will now test and compare these various formulations in a corner flow, where
a vertical flux through the interface also takes place and leads to larger variations.

4. Corner flow in a fluid overlying a porous layer
We consider a corner flow in a domain 0 � z � h, 0 � x < ∞, with pure fluid in the

upper half h/2 < z � h and a porous matrix of porosity χ and permeability Π (χ),
saturated with the same fluid, in the lower half 0 � z < h/2 (figure 4). At z = h, a
purely vertical input velocity u = (0, −V ) is imposed; at the lower wall z = 0, we
suppose no vertical velocity v = 0 and no horizontal shear ∂u/∂z = 0; at the vertical
wall x = 0, we suppose no horizontal velocity u = 0 and no vertical shear ∂v/∂x = 0.
We look for the stationary solution and we suppose that the flow is sufficiently slow
to neglect inertial effects (i.e. the left-hand side of (2.13) is zero).

Following the well-known results in the case of a pure fluid (e.g. Batchelor 1967),
we look for a solution of the form

u = (−xVf ′(z), Vf (z)), (4.1)

which directly satisfies the mass conservation equation (∇ · u = 0) and the boundary
conditions at the vertical wall. We thus look for a function f that satisfies the
equations of motion as well as the boundary conditions

f (h) = −1, f ′(h) = 0, f (0) = 0 and f ′′(0) = 0. (4.2)

In the following, all equations are non-dimensionalized using the input velocity V ,
the depth of the domain h and the viscous pressure scale ηV/L.
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Figure 4. Corner flow in a fluid overlying a porous layer with a constant porosity: geometry
and streamlines given by the limiting Darcy–Brinkman solution with constant χf = 0.2 and

Da = 10−3. Continuous streamlines are equally spaced from 0.1 to 2.9 with a spacing 0.2, and
dashed streamlines from 0.02 to 0.08 with a spacing 0.02.

4.1. Constant porosity

We first consider that the porous matrix has a constant porosity χf and a constant
permeability Π (χf ).

4.1.1. Darcy–Brinkman formulation

For 0 � z � 1, the fluid follows the Darcy–Brinkman equation

0 = −∇p +
1

χ
∇2u − h2

Π (χ)
u. (4.3)

Using (4.1) and eliminating the pressure, we find

0 =
d

dz

[
1

χ
f ′′′ − h2

Π (χ)
f ′

]
. (4.4)

As previously, this equation can be solved for any given averaging size δa and
permeability function. All solutions converge towards a single limit when δa → 0.
Taking into account (4.4) and the fact that χ → 1 and Π(χ) → ∞ in the liquid,
χ → χf and Π (χ) → Π (χf ) in the porous matrix, the limiting solution can be found
analytically by solving

0 = f iv in the liquid (1/2 < z � 1), (4.5a)

0 = f iv − 1

δ2
f ′′ in the porous matrix (0 � z < 1/2), (4.5b)

where

δ =

√
Da

χf

and Da =
Π (χf )

h2
. (4.6)

Hence, taking (4.2) into account,

f (z) = −1 + A(z − 1)2 + B(z − 1)3 in the liquid, (4.7a)

f (z) = C sinh(z/δ) + Dz in the porous matrix, (4.7b)
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Figure 5. Horizontal velocity profiles with χf = 0.2, Da = 10−3, for the various proposed
interface boundary conditions.

where the constants A–D are determined from the interfacial conditions that f and
its first two derivatives must be continuous. Additionally, continuity of pressure at
the interface requires that

f ′′′|(1/2)+ =
1

χf

f ′′′ − 1

Da
f ′|(1/2)− . (4.8)

The solution can be found straightforwardly and is plotted as a dashed curve in
figure 5.

4.1.2. Mixed Stokes–Darcy formulation

In the pure liquid domain, the velocity again obeys the Stokes equation (4.5a), and
the function fS is given by (4.7a). However, in the porous matrix, the velocity follows
Darcy’s equation

0 = −∇p − 1

Da
u, (4.9)

which gives

f ′′
D = 0 with fD(0) = 0 ⇒ fD(z) = Cz. (4.10)

The constants A–C are determined by three interfacial conditions between the Stokes
and Darcy regions. In all cases, continuity of pressure requires that

−f ′′′
S =

1

Da
f ′

D. (4.11)

The two addtional constraints depend on the chosen interfacial conditions. For our
interfacial conditions (3.15), we introduce the typical size of the viscous transition δ

as

δ = c

√
Da

χf

, (4.12)

where c is a scaling constant, and write the continuity of the velocity vector at
zδ = 1/2 − δ:

−1 + A(zδ − 1)2 + B(zδ − 1)3 = Czδ and 2A(zδ − 1) + 3B(zδ − 1)2 = C. (4.13)
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Figure 6. Integrated difference between the mixed Stokes–Darcy and Darcy–Brinkman results
as a function of the scaling coefficient (i.e. α for Beavers & Joseph (1967) and c for our
interfacial conditions) for a corner flow in a fluid overlying a porous layer with a constant
porosity (Da = 10−3 and χf = 0.2).

For Beavers & Joseph’s (1967) conditions, the continuity in normal velocity and the
slip condition (1.1) at z = 1/2 imply that

−1 + A/4 − B/8 = C/2 and − A + 3B/4 − C =

√
Da

α
(2A − 3B), (4.14)

where α is a constant to be determined.

4.1.3. Results

Horizontal velocity profiles for the limiting Darcy–Brinkman formulation as well
as for the Stokes–Darcy formulation with various suggested interfacial conditions are
presented in figure 5. We also depict in figure 6 the integrated difference between
a given formulation and the Darcy–Brinkman results, for both the vertical and the
horizontal velocities.

Both conditions of continuous horizontal velocity at z = 1/2 and zero horizontal
velocity at z = 1/2 are incompatible with the Darcy–Brinkman results: they lead
to differences of several percent throughout the whole liquid region. Beavers &
Joseph’s (1967) interfacial conditions and our interfacial conditions can be adapted
through their respective scaling coefficient, and give a small difference confined to the
neighbourhood of the interface only. The best correspondence for both the vertical
and the horizontal velocities is obtained with our boundary conditions for c ∼ 1.
The dependence on Darcy number Da is shown in figure 7 for both a continuous
tangential velocity at z = 1/2 and our interfacial conditions. In all cases, the difference
between the Darcy–Brinkman and Stokes–Darcy formulation decreases with the
Darcy number, and all formulations are formally consistent in the limit Da → 0: the fl-
ow then focuses into the fluid part of the system only, with zero velocity in the porous
medium. Note however that at Da = 10−6 the relative difference is two orders of
magnitude smaller when using our interfacial condition than using continuity of the
velocity at z = 1/2.

In figure 8, we show the relative flow rate increase in the pure fluid, compared to
the classical interfacial condition of zero tangential velocity. Unlike for the Poiseuille
geometry (see § 3.2), the Darcy–Brinkman method and Beavers & Joseph’s (1967)
interfacial conditions do not give the same results. Rather, two opposite trends take
place: Darcy–Brinkman and our interfacial conditions suggest a possible decrease of
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Figure 8. Relative flow rate increase as a function of the inverse of the square root of the
Darcy number with χf = 0.2, for the various proposed interfacial boundary conditions. By
definition, the condition of zero tangential velocity leads to Φ = 0.

the flow rate, whereas Beavers & Joseph’s (1967) interfacial condition and continuity
of the velocity always show Φ > 0. This suggests an experimental test that could be
used to differentiate between these various formulations.

4.2. Linear porosity

The previous simple example was solved analytically, so the jump in porosity could
be accommodated when solving the Darcy–Brinkman equation. However, the Darcy–
Brinkman formulation is most often used in numerical studies of systems in which the
porosity exhibits large-scale variations and continuous transition towards the pure
fluid (e.g. mushy layers). To investigate the consequences of this, we now consider
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the same configuration but with a porosity changing linearly from 1 at the interface
z = 1/2 to χ0 at z = 0, i.e.

χ(z) = χ0 + 2(1 − χ0)z. (4.15)

4.2.1. Darcy–Brinkman formulation

For 0 � z � 1, the fluid follows the Darcy–Brinkman equation (4.4), with the
porosity given by (4.15) and the Carman–Kozeny relationship (3.4). We solved this
ordinary differential equation numerically, subject to the boundary conditions (4.2).
Results are shown in figure 9.

4.2.2. Mixed Stokes–Darcy formulation

In the pure liquid domain, the function fS is again given by (4.7a). In the porous
matrix, the velocity follows Darcy’s equation. Eliminating the pressure, one finds

d

dz

[
f ′

D(z)

Π (χ)

]
= 0, (4.16)

which, using the porosity given by (4.15), the Carman–Kozeny relationship (3.4), and
taking into account that fD(0) = 0, can be solved to give

fD(z) = f ′
D(0)

1 − χ0

2χ3
0

G(z), (4.17)

where

G(z) =
1

1 − χ0

2z

1 − 2z
+ 3 ln(1 − 2z) + 6(1 − χ0)z + 2(1 − χ0)

2z(z − 1). (4.18)

The three unknown constants A, B and f ′(0) are determined by the interfacial
conditions. When using the Carman–Kozeny permeability function, Π → ∞ when
z → 1/2. Hence, physically, Darcy’s equation is not relevant near the interface z = 1/2.
Moreover, mathematically, no interfacial conditions between the Stokes and Darcy
domains taken at z = 1/2 are usable. We can however use our interfacial conditions,
which lead to f , f ′ and the pressure all being continuous at a depth zδ = 1/2 − δ.
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The latter implies

−f ′′′
S (zδ) =

1

Da

(1 − χδ)
2

χ3
δ

f ′
D(zδ), (4.19)

where now Da = Π0/h
2.

The definition of δ is not as straightforward as in the case of constant porosity, since
the porosity and the permeability change with depth. We suggest calculating δ using
(3.15) with the local value of the porosity and the permeability, i.e. non-dimensionally

δ = c

√
Π (zi − δ)/h2

χ(zi − δ)
, (4.20)

where c is a scaling constant. With a linear porosity and Carman–Kozeny permeability,
this is a polynomial equation in δ. In general, since we expect δ to be small and
χ(zi − δ) to be very close to 1, a first-order development of (4.20) using (3.4) gives

δ =

√
c

χ ′(zi)
Da1/4. (4.21)

4.2.3. Results

Typical profiles for Darcy–Brinkman and mixed Stokes–Darcy formulations are
presented in figure 9. The integrated difference between the two formulations is
shown as a function of the scaling coefficient c in figure 10. In the present case,
continuity of velocity at the fluid–porous matrix interface (c → 0) gives unrealistic
results, where the horizontal velocity is maximum at the interface with a sharp jump
between the two domains. This behaviour is mainly due to the divergence of the
permeability given by the Carman–Kozeny equation when the liquid fraction goes
to 1. In contrast, the Darcy–Brinkman formulation and our interfacial conditions
smooth this discontinuity by introducing a viscous transition layer between the liquid
and the porous matrix. Note that δ ∼ Da1/4 now rather than δ ∼ Da1/2 for constant
porosity. Hence, the effects of the viscous layer remain important over a large depth,
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even for very small Darcy number. The best agreement between the two formulations
is obtained for c ∼ 2.

This simple example illustrates how the choice of the interfacial condition influences
the macroscopic computed results. As we will now see, this will be especially
important when studying the solidification of a binary alloy, since first-order results
regarding macroscopic physical properties (especially the bulk concentration) will
depend strongly on the chosen velocity conditions at the interface.

5. Directional solidification in a corner flow
Our interest in comparing the single-domain Darcy–Brinkman model with the

multiple-domain Stokes–Darcy model for flows through adjacent porous and pure-
fluid domains stems from modelling interactions between flow and solidification
within mushy layers. We therefore conclude by examining a simple problem of alloy
solidification, where some of these issues can be confronted.

5.1. Simplified physical model

We consider a binary alloy in the corner-flow geometry with the boundary conditions
introduced in the previous section, and we further suppose that the incoming fluid at
z = h has a fixed temperature T∞ and a fixed concentration C∞, while the temperature
of the lower boundary at z = 0 is fixed just above the eutectic temperature Te. A
mushy layer then grows from this lower boundary, leading to a time-evolving porosity
field. Following classical studies on solidification, we suppose that the whole system
is pulled vertically at a constant rate Vpull and we look for a stationary solution in
the moving frame of reference.

The solidifying binary alloy is fully characterized by five independent variables: the
average enthalpy h; the average species concentration C; the two-dimensional Darcy
velocity vector u; and the liquid fraction χ . These five variables are determined by
five coupled equations characterizing the transport of enthalpy, species, mass and
momentum, as well as the thermodynamic constraint imposed by the phase diagram.
Three other useful variables can be derived from these primary unknowns, i.e. the
temperature T , the liquid enthalpy hl and the liquid concentration Cl .

We denote by kk the thermal conductivity, cp,k the heat capacity per unit volume
and Dk the species diffusivity of the liquid (k = l) and the solid (k = s) respectively. To
keep the problem simple, we make the following assumptions. We neglect variations
of material properties inside the control volume �V , and suppose that the solid and
the liquid have the same physical properties, i.e. [ρl]

l = [ρs]
s = ρ, [kl]

l = [ks]
s = k, and

[cp,l]
l = [cp,s]

s = cp . We neglect species diffusion, i.e. [Dl]
l = [Ds]

s = 0. We suppose
that the temperature is constant inside the control volume �V , i.e. [Tl]

l = [Ts]
s = T ,

and that the liquid is well mixed inside the control volume �V , i.e. [Cl]
l = Cl . Also,

we consider a simplified equilibrium phase diagram, where the solidus and liquidus
curves are respectively given by

C = 0 or Tsolidus(C) = Te, (5.1a)

Tliquidus(C) = Tm − Tm − Te

Ce

C, (5.1b)

where Ce corresponds to the eutectic concentration and Tm to the liquidus temperature
at C = 0.

In the corner-flow geometry, we look for a solution in which the enthalpy,
temperature, concentrations, liquid fraction, and velocity function f depend on time
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t and depth z only. We define the dimensionless temperature and concentration by

θ =
T − Te

T∞ − Te

, C =
C − Ce

C∞ − Ce

(5.2)

and introduce the following characteristic scales: energy cp(T∞ − Te); length h;
time h2/κ , where κ = k/cp; velocity κ/h; pressure ηκ/h2. Then, the dimensionless
mesoscopic transport equations in the moving frame of reference, derived from
their microscopic counterpart using the volume-averaging method (see for instance
Beckermann & Viskanta 1988), are

∂h

∂t
+ (f − Vpull)

∂h

∂z
− ∂2h

∂z2
= Lf

∂χ

∂z
− L

∂2χ

∂z2
, (5.3)

∂C

∂t
+

(
f

χ
− Vpull

)
∂C

∂z
− 1

χ2
f

∂χ

∂z
C =

1

χ2
f

∂χ

∂z

Ce

C∞ − Ce

, (5.4)

where

hl = L + θ, h = χL + θ, (5.5)

and since we suppose here that the system remains strictly above the eutectic
temperature,

C = χCl + (χ − 1)
Ce

C∞ − Ce

. (5.6)

To close the problem, finally we rewrite the relationships given by the phase diagram
in terms of enthalpy. For any given (C, h), we compute

hliquidus(C) = L + mC, (5.7)

where m is the dimensionless liquidus slope

m =
Tm − Te

T∞ − Te

C∞ − Ce

−Ce

. (5.8)

Then, if h � hliquidus(C), χ = 1; else, since we remain strictly above the eutectic, the
temperature and liquid concentration are related by the liquidus

θ = mCl, (5.9)

and from (5.5) and (5.6), χ is the solution between 0 and 1 of the second-order
equation

h = χL + m

[
C

χ
+

(
1

χ
− 1

)
Ce

C∞ − Ce

]
. (5.10)

Note that using the enthalpy and bulk concentration instead of the temperature and
liquid concentration in the transport equations prevents us from calculating ∂χ/∂t

directly: rather, χ is determined using the known values of h and C and the phase
diagram.

5.2. Solution strategy and numerical approach

Our initial state at t = 0 is defined by θ = 1 except that θ(0) = 0, C = 1, and χ = 1
except that χ(0) = 1+(C∞ −Ce)/Ce, which comes from (5.6) with Cl(0) = θ(0)/m = 0.
Hence, h = L + 1 except that h(0) = L(1 + (C∞ − Ce)/Ce). We then progressively
increment time until the steady state is reached. Knowing all fields at time tn, we
successively compute all fields at time tn+1 = tn + �t in four successive steps. We
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first compute hn+1 using a time-implicit space-centred discretization of (5.3) with the
boundary conditions

hn+1
z=1 = L + 1 and hn+1

z=0 = χn
z=0L. (5.11)

We then compute Cn+1 using a time-implicit space-upwind discretization of (5.4) with
the boundary condition

Cn+1
z=1 = 1. (5.12)

From (Cn+1, hn+1), we compute χn+1 using the process described in (5.7)–(5.10).
Neglecting advective terms as well as convective terms (i.e. ρl does not depend on

θ nor on Cl), we finally compute f n+1 using χn+1 and either the Darcy–Brinkman
equation (4.4) or the mixed Stokes–Darcy equations (4.7a) and (4.16). As in the
previous section, since χ → 1 at the interface, only our interfacial conditions can
be used with the Carman–Kozeny permeability. At each time step, we then compute
zn+1

δ , the interfacial position for velocity boundary conditions, using local values of
porosity and permeability, i.e.

zn+1
δ = zn+1

χ − c

√
Πn+1(zn+1

δ )/h2

χn+1(zn+1
δ )

, (5.13)

where c is a scaling constant and zn+1
χ the position of the liquid–porous matrix

interface. However, in order to compare with previous multiple-domain studies of
solidification (e.g. Schulze & Worster 1999), we also present here results computed
with either a continuous tangential velocity at zn+1

χ or Beavers & Joseph’s (1967)

interfacial conditions at zn+1
χ , using a non-divergent permeability function

Π̂ = Π̂0χ
3. (5.14)

In these cases, Π̂0 is chosen such that Π (z = 0) = Π̂ (z = 0).

5.3. Results

Typical steady-state profiles for the Darcy–Brinkman and mixed Stokes–Darcy
formulations with our interfacial conditions are presented in figure 11. One can see
that the steady-state porosity profile is close to linear. Hence, as previously, velocities
given by the limit c → 0 are unrealistic, whereas c ∼ 1 gives qualitatively good
agreement between single-domain and multiple-domain formulations. The simple
case of solidification studied here demonstrates that the predicted macroscopic bulk
concentration field is very sensitive to the choice of interfacial conditions: significant
variations take place throughout the whole depth of the solid formed. This is mainly
due to the assumption of no species diffusion: the bulk concentration is only advected,
and thus highly sensitive to the velocity field. In most natural and industrial settings,
the Lewis number (i.e. the ratio of thermal to species diffusivity) is large and this
conclusion will remain valid. As shown in figure 12, the agreement between the two
formulations can be adjusted through the choice of the scaling coefficient c. It is
not possible to choose a value that gives simultaneously the best agreement for all
macroscopic fields, but values of c ∼2–4 work reasonably well.

Steady-state profiles obtained with the mixed Stokes–Darcy formulation with a
continuous tangential velocity or Beavers & Joseph’s (1967) conditions at the liquid–
porous interface are presented in figure 13. Significant differences in all macroscopic
fields between these formulations and the Darcy–Brinkman formulation are observed
through the whole depth of the system, which can be adjusted neither by the scaling
coefficient α nor by the permeability function.
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Figure 11. Comparison between steady-state profiles given by the Darcy–Brinkman
formulation (continuous line) and the mixed Stokes–Darcy formulation with our interfacial
conditions for the solidification of a binary alloy in a corner flow (Vpull = 1, V = 10, L = 10,

Da = 10−4, Ce/(C∞ −Ce) = −7, m = 0.8). Dashed line: mixed Stokes–Darcy in the limit c → 0;
dashed-dotted line: mixed Stokes–Darcy with c = 1.

Special care should thus be taken in the choice of the microscopic fluid–porous
matrix interface conditions when determining realistic macrosegregation patterns of
binary alloy solidification in industrial or natural settings. Differences calculated here
with a simplified physical model would be even larger when taking into account
buoyancy effects, since then velocities and bulk concentration would actively interact.
Direct comparison with experiments is necessary to validate a given approach.
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Figure 12. Integrated difference between the Darcy–Brinkman and the mixed Stokes–Darcy
formulations with our interfacial conditions as a function of the scaling coefficient c (Vpull = 1,

V = 10, L = 10, Da = 10−4, Ce/(C∞ − Ce) = −7, m = 0.8).

6. Conclusion
Studies of multiphase flows can be divided into two groups. Some models use a

single Darcy–Brinkman formulation for both the liquid and the porous domains, and
resolve the system on a single mesoscopic scale. Other models use independent sets
of equations for the liquid and the porous matrix, with boundary conditions imposed
at the sharp interface.

Previously suggested interfacial conditions, written directly at the porous matrix–
liquid interface, do not give a satisfactory agreement with the Darcy–Brinkman results,
even in the simple configurations studied here. Indeed, Darcy’s equation does not take
into account fluid–fluid viscous interactions that become important very close to the
interface and/or when the permeability becomes large. We therefore define a viscous
transition zone below the liquid–porous matrix interface, inside the porous matrix,
where Stokes’ law still applies, and consider Darcy’s law only below it. This transition
zone is of the order of the square root of the local value of the permeability divided
by the liquid fraction. Using this formulation, a good agreement with the Darcy–
Brinkman results is obtained, even for a continuous transition between liquid and
solid, for instance during binary alloy solidification.

We must however keep in mind that the derivation of the mesoscopic volume-
average Darcy–Brinkman equation necessitates many approximations. The study
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Figure 13. Comparison between steady-state profiles given by the Darcy–Brinkman
formulation (continuous line) and the mixed Stokes–Darcy formulation using the non-divergent
permeability function (5.14) and either a continuous horizontal velocity at the interface
(dashed-dotted line) or Beavers & Joseph’s (1967) interfacial conditions with α = 1 (dashed
line) for the solidification of a binary alloy in a corner flow (Vpull = 1, V = 10, L = 10,
Da = 10−4 corresponding to Π̂0/h2 = 2.9 × 10−3, Ce/(C∞ − Ce) = −7, m = 0.8).

here does not demonstrate its validity, which should be tested by careful experimental
investigations (see also Zhao & Chen 2001). We suggest for instance reproducing
Beavers & Joseph’s (1967) experiments in the corner geometries studied here
or investigating the precise macrosegregation patterns produced by binary alloy
solidification, since this would simultaneously validate the Darcy–Brinkman equation
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and test the various suggested interfacial boundary conditions in the Stokes–Darcy
approach. The approach formulated and illustrated in this paper will allow systematic
comparisons to be made between single-domain and sharp-interface models of alloy
solidification; comparisons which may, in turn, indicate the need for better modelling
of the interfacial regions of mushy zones.

The authors would like to acknowledge support from the Leverhulme Trust and
from the European Community (Marie Curie Intra European Fellowship FP6-501040).

Appendix. The volume-averaging method
We consider a domain comprising both a solid and a liquid phase, for instance a

porous medium or a solidifying material, and define a mesoscopic volume �V large
enough to smooth the morphological complexities, but small enough to capture the
global transport properties (i.e. typically a few pore lengths). At this intermediate
scale, mesoscopic transport equations can be derived from the volume averaging of
the microscopic equations over �V . Concepts and theorems that are used by this
technique have been extensively studied (e.g. Gray 1975; Whitaker 1999) and are
briefly recalled here for application to the momentum equation.

We define the liquid phase function νl by

νl =

{
1 in the liquid,

0 in the solid,

and the liquid volume fraction (porosity) by

χ =
1

�V

∫
�V

νl dV =
�Vl

�V
, (A 1)

where dV is an infinitesimal element of volume relative to the control volume �V and
�Vl the volume of liquid contained in �V . The volume average of a given quantity
of liquid per unit volume φl is

[φl] =
1

�V

∫
�V

φlνl dV. (A 2)

We also define the intrinsic volume average, i.e. the volume average in the liquid
phase only,

[φl]
l =

1

�Vl

∫
�V

φlνl dV =
[φl]

χ
, (A 3)

and the fluctuating component

φ̂l = (φl − [φl]
l)νl. (A 4)

We now introduce three useful mathematical formulae, valid when functions change
on typical scales larger than the averaging length (Gray 1975; Whitaker 1999):

formula 1

[φlψl] = χ[φl]
l[ψl]

l + [φ̂lψ̂ l], (A 5)

where ψl is another given quantity of liquid per unit volume;
formula 2 [

∂φl

∂t

]
=

∂

∂t
[φl] − 1

�V

∫
�A

φlw · nl dA, (A 6)
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where �A is the interfacial area between the liquid and solid phases in �V , w is the
velocity of the microscopic interface and nl is the outward unit normal vector of the
infinitesimal area dA;

formula 3

[∇φl] = ∇[φl] +
1

�V

∫
�A

φlnl dA (A 7)

which can also be written

[∇φl] = χ∇[φl]
l +

1

�V

∫
�A

φ̂lnl dA. (A 8)

The demonstration of these three formulae is straightforward in the context of
slowly variable functions, noting that

∂νl

∂t
=

{
w · nl on the liquid–solid interface,

0 elsewhere;

∇νl =

{−nl on the liquid–solid interface,

0 elsewhere.

When functions change rapidly (i.e. over a length scale comparable to the averaging
length, as for instance at a sharp porous matrix–liquid interface), a more complex
approach is necessary (see for instance Ochoa-Tapia & Whitaker 1995a).
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